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ABSTRACT

The Special Sensor Microwave/Imager (SSM/I) radiometer is a useful tool for monitoring snow wetness on a large
scale because water content has a significant effect on the microwave emissions at the snowpack surface. To date,
SSM/I snow wetness algorithms, based on statistical regression analysis, have been developed only for specific regions.
Inadequate ground-based snow wetness measurements and the non-linearity between SSM/I brightness temperatures
(Ts) and snow wetness over varied vegetation covered terrain has impeded the development of a general model. In
this study, we used a previously developed linear relationship between snowpack surface wetness (% by volume)
and concurrent air temperature (°C) to estimate the snow wetness at ground weather stations. The snow condition
(snow free, dry, wet or refrozen snow) of each SSM/I pixel (a 37 x 29km area at 37-0 GHz) was determined from
ground-measured weather data and the Ty signature. SSM/I Tgs of wet snow were then linked with the snow wetness
estimates as an input/output relationship. A single-hidden-layer back-propagation (backprop) artificial neural network
(ANN) was designed to learn the relationships. After training, the snow weétness values estimated by the ANN were
compared with those derived by regression models. Results show that the ANN performed better than the existing
regression models in estimating snow wetness from SSM/I data over terrain with different amounts of vegetation cover.
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INTRODUCTION

The Special Sensor Microwave/Imager (SSM/I) radiometers, on board the Defense Meteorological Satellite
Program (DMSP) F8, F10 and F11 satellites, have been used to produce global hydrological data (Ferraro
et al., 1994). The SSM/I is a seven-channel, four-frequency, linearly polarized, passive microwave radio-
metric system (Hollinger, 1989), which measures both vertically (V) and horizontally (H) polarized bright-
ness temperatures (Tgs),-at 19-35, 37-0 and 85-5 GHz, and vertically polarized temperatures at 22:235 GHz.
Unlike in situ methods, the SSM/I provides an indirect estimate of snow parameters by using parameter
retrieval algorithms, with Ty values as inputs. To develop the algorithm, SSM/I Ty observations along
with ground truth data are required.

Because of the limited penetration depth of the passive microwave signal, the SSM/I registers wet snow
when the surface layer contains water even if the bulk of the snowpack is dry (Ulaby et al., 1986). The water
between the snow grains causes a significant increase in internal absorption of the microwave radiation
thereby increasing the snow emissivity (Rango et al., 1979). Foster et al. (1984) indicated that Ty for
frequencies above 10 GHz increases rapidly with increasing snow wetness (i.e. the liquid water content)
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up to 4% by volume, and decreases gradually with snow wetness above 5% by volume. It is therefore
possible to monitor large-scale snow wetness at the snowpack surface using the SSM/I radiometer.
Nevertheless, the development of an SSM/I snow wetness algorithm has been impeded by the lack of
adequate ground-based snow wetness measurements. In a field experiment, Sun et al. (1995) used a dielec-
tric probe to sample snow wetness at the snowpack surface (top 10cm layer) over forested, mountainous
and non-vegetated flat areas. They found that snow wetness, Wsnow (% by volume), was related
(R = 0-708) to concurrent air temperature, TAor(°C), as

Wsnow = 1:0285 + 0-5708 Talr (1

“Based upon this regression model, they estimated the snow wetness concurrently with Ty observations for
a flat, sparsely vegetated SSM/I pixel and derived a regression-based (R* = 0-950) SSM/I snow wetness
algorithm in terms of Ty difference, Tp (K), as

Wovow = —475 +339-53T5" - 6159-53757 + 401120075 @

~ where Tp = TI19V — T37H. However, they found that the algorithm was not applicable in areas dominated
by evergreen forest. The overlying vegetation depolarized the signal. This decreased the temperature
difference Tp (Hall e al., 1991) and resulted in an overestimate of snow wetness.

Because of the complexity between Ty and snow wetness over varied terrain and vegetation cover, a non-
linear retrieval method is needed to obtain snow wetness values from microwave data. Artificial neural

STUDY SITE AND DATA

The study area (located in the western United States and bounded by latitude of 40°N to 45°N and
longitude of 100°W to 115°W, Figure 1) was selected as it contained both plains and mountainous regions
and diverse vegetation cover. SSM/I Ty values and ground-based climate data from 1 October 1989 to 30
May 1990 in the area were used for the study.

SSM/I Ty values from the DMSP-F8 satellite were obtained from the Naval Research Laboratory. Both
SSM/I 85-5 GHz channels failed on DMSP-F8, so only Ty values of the lower frequency channels, T19V,
TI9H, T22V, T37V and T37H, were available.

~ Ground-based measurements of daily snow water equivalent (SWE), and maximum, minimum and
average air temperature were obtained for mountainous terrain from the Soil Conservation Service
(SCS) SNOwpack TELemetry (SNOTEL) system. Data for daily snow depth (SD), maximum and minj-
mum air temperature and air temperature at the satellite overpass time were obtained for the plains

from the National Oceanic and Atmospheric Administration (NOAA) cooperative weather observation
network.

GROUND-BASED SNOW CLASSIFICATION

Daily SNOw conditions at each SNOTEL or NOAA weather station at either 0600 or 1800 (the DMSP-F8
local crossing time) were classified as: (i) snow free if SWE or SD was equal to zero; (ii) dry snow if SWE or
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Figure 1. The study area and the ground-based weather stations

SD increased from the previous observation time and the concurrent air temperature was below 3-5°C; (iii)
wet snow if SWE or SD was not equal to zero and the concurrent air temperature was greater than or equal
to 3-:5°C; or (iv) refrozen snow if the concurrent air temperature was below freezing and the snow condition
of the previous overpass was either wet or refrozen. We used 3-5°C as the cut-off point to avoid adding dry
snow pixels to the wet snow data set in areas having spatially variable air temperatures. As can be seen from
Equation (1), air temperatures greater than 3-5°C can be interpreted as wet snow (Wsnow > 3% by volume,
International Commission on Snow and Ice Classification System).

For the SNOTEL stations, air temperatures at 0600 and 1800 (the SSM/I overpass times) were used as
the daily minimum and average air temperature, respectively. For the NOAA weather stations, a tempera-
ture measurement recorded between 0400 and 0700 was used to calculate snow wetness for the 0600 flyby
data, and a temperature measured between 1600 and 1900 was used with the image acquired at 1800. If air
temperatures were not recorded during these intervals, the air temperature at 0600 was equal to the mini-
mum air temperature and that at 1800 was interpolated as follows. The maximum air temperature was
assumed to occur at 1400 and was linearly decreased to the temperature at observing time if after 1400,
or the maximum air temperature of the previous day was decreased to the air temperature at observing
time if before 1400.

INTEGRATION OF SSM/I AND SNOW WETNESS DATA

Since the latitude/longitude coordinates of the SSM/I pixels change with each overpass, a neighbour-
hood merging method (Sun, 1996) was employed to integrate the SSM/I and snow wetness data into
one database. This was done by searching for ground weather stations within a 15-km radius of the
SSM/I latitude/longitude location (i.e. approximately the size of a 37-0 GHz pixel) and averaging the
air temperature in each SSM/I pixel. Snow wetness at each pixel was then estimated using Equation (1).
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ANN-BASED SNOW CLASSIFICATION

Because of the temporal variability of air temperature, errors in the classification of snow wetness could
result in different snow conditions being related to SSM/I pixels of similar Ty patterns. To minimize
classification errors, the SSM/I ANN snow classifier (Sun, 1996) was also used to classify snow conditions
in the database. Only data of those SSM/I pixels classified as wet snow by both ground-based and ANN-
based classification methods were used as the input/output data pairs (i.e. input of five SSM/I Ty values and
one desired output of snow wetness). Thus, a subset database of input/output data pairs was created.

ANN TOPOLOGY AND LEARNING ALGORITHM

A single-hidden-layer backprop ANN, as illustrated in Figure 2, was created. The ANN consists of a series
of three layers: one input layer, one hidden layer and one output layer. Each layer has a number of nodes:
five input nodes for the input of five Ty values, one output node for the mapping output that estimates the
desired output of snow wetness and a set of hidden nodes for internal representation of the mapping
between the input and output nodes. Nodes of adjacent layers are fully connected. Each connection is
initially assigned a small random value (connection weight) between —0-1 and 0-1. Given the number of
nodes in each layer from input to output as a sequence, the ANN topology is represented as 5-N-1
where N is the number of hidden nodes that was selected, either 2, 5, 10 or 20. In addition, a bias node,
functioning similarly to a constant in a regression, is connected to the nodes in the hidden and output
layers.

The error back-propagation training algorithm (Zurada, 1992) was applied to train the ANNs. This
methed allows inputs to flow forwards through the hidden layer to the output layer. The inputs are
used to calculate the node outputs in each hidden and output layer. Each node in the hidden layer and
output layer decides its output by calculating the ner, which is the sum of all of its incoming connection
weights, W, multiplied by the node outputs, X, from the previous layer:

b
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Figure 2. Example of a 5-2-1 ANN using backprop training
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“where S denotes the state of current layer. Then, the net is transferred by the activation function, which
gives an output between 0 and 1:

XS = flnetfS)) = 1)1 + exp (~netf™))) “

" After calculating node output in the output layer, the mapping error, E, between desired output, D, and
node output, X, is measured:

EF) =10 - xF = 4D — f(ner{*)))* ®)

"The error is then propagated backwards from the output layer to the input layer. The connections
weights are adjusted to minimize the error, so that the calculated output is more like the desired output.
In back-propagation, the error is used in obtaining the error gradient, VE:

VE® = ~0E® 10X)(0X5) 1oW,) = (D) - X))/ (net{H x5 ®)

‘Because there is no desired node output in the hidden layer, the mapping error of each node in this layer is
derived by a weighted sum of error gradients from the output layer:

Ei(S) — Z M§S+1)VEi(s+l) (7

ij
“and the error gradient is:
VES® = ~ES)f (ner®) x5V ®)
" The error gradients in each layer are propagated back to adjust the connection weight by:
W =wiD —qVES + aaw Y )

‘where ¢ is the time when the weight is updated, 7 is the learning rate and « is the momentum term
(Rumelhart et al., 1986). In this study, the learning rate was determined at 0-05, 0-10 and 2:0 for each
ANN topology. The momentum term was set at 0-09.

ANN TRAINING, VALIDATION AND TESTING

As indicated by Masters (1993), the proportional representation of classes in the training data set can have
a profound influence on the ANN performance. The frequency distributions of data elements may also be
important to the ANN training (Sun e? al., 1996). Consequently, data elements in the subset database were
divided into groups according to the frequency distributions of snow wetness. Based on the smallest data
elements in the groups (Table I), six data elements of each snow wetness group were randomly selected to
form the training data set. The rationale was to make the data sets as representative of the whole data and
as balanced in size for each group as possible. From the remaining elements, a validation data set was also
randomly created.

The activation function [Equation (4)] applied to the net input of nodes in the hidden and output layers
maps the net output into the range between 0 and 1 (Zurada, 1992). Accordingly, the Ty inputs were scaled
between 0 and 1 with respect to a range from 200 to 270 K to represent the input attributes in the ANN. The
output, between 0 and 1, for snow wetness represents a water content of 0 to 10% by volume.

The training process was started by running the ANN, which involved forward feeding node outputs
by Equations (3) and (4) from the input to output layer, backward propagating mapping errors from the
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‘Table 1. Input/output data pairs selected for ANN training and validation

‘Snow wetness “Number of input/output data pairs
(% by volume)

Entire data set  Training data set  Validation data set

0-1 50 6 4
1-2 25 6 4
2-3 24 6 4
3-4 18 6 4
4-5 14 6 4
5-7 8 6 2
7-10 9 6 2
Total 148 42 24

“output to input layer to adjust the connection weights by Equations (5)—(9) and calculating the root-mean-
squared (RMS) error after all the input/output pairs in the training data set were processed. The RMS error
was computed on the validation data set by:

RMS = \/% S i-x)? (10)
nq

“where n is the number of input/output data pairs in the data set and ¢ is the number of nodes in the output
layer. The training run was repeated until a minimum RMS error was reached.

We evaluated the performances of the ANNs using SSM/I Tp data obtained in 1990 over flat, sparsely
vegetated terrain by the DMSP-F11 satellite combined with air temperature-derived [Equation (1)] snow
wetness estimates (Sun et al., 1995). After each training, the correlation coefficient, r, between the ANN-
retrieved and air temperature-derived values was examined. The ANN with the overall largest r value
was used for the follow-up comparisons. :

In addition to Equation (2), we developed a multiple regression model to describe the relationship of
snow wetness to T19V, T19H, T22V, T37V and T37H based on the training data sampled over a varied
vegetation covered region. Comparison between snow wetness values obtained using the ANN model,
the regression models and the air temperature model [Equation (1)] were made using statistical inference
in terms of r and ¢ test (SAS Institute Inc., 1988).

RESULTS AND DISCUSSION

Table IT summarizes the training and testing performance of each ANN topology at different learning rates.
There was no evidence that a slower or a higher learning rate improves the ANN performance (i.e. a smaller
minimum RMS error). The relatively higher minimum RMS error in each ANN topology at a learning rate
of 0-05 could be a sign that the ANN became stuck in a local minimum of the error function [Equation (10)]
when adjusting the connection weights (Zurada, 1992). It might also be that these ANNs had many equally
good global minima (Masters, 1993) as the RMS errors were similar. Consequently, the best ANN (i.e. the
5-2-1 ANN trained at a learning rate of 0-10 ANN with r of 0-542 in testing) was derived from a number of
training runs at different learning rates by trial and error.

From a statistical point of view, the relationship between snow wetness, Wgnow, and all five T s values in
the training data was defined by the multiple regression model (R* = 0-362):

Wenow = —11449 + 04(T37V) + 0S6(T37H) ~ 064(T22V) + 04(TI9V) — 026(TI9H) (1)

“Only about 26% (r=

0-511) of the variation in snow wetness was explained by Equation (11) in the valida-
tion data set (Table I

IT). The weak linear relationship could result from the complexity between Tg and
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“Table II. Summary of the ANNs training and testing performances

“ANN ) Training results “Testing results

“Topology Learning rate  Total runs Minimum RMS

5-2-1 0-05 1149 0-22398 0-539
0-10 558 0-22119 0-542

_ 0-20 320 0-22250 0-533
5-5-1 0-05 1125 0-22519 0-536
0-10 581 0-22174 0-539

) 0-20 309 0-22241 0-528
5-10-1 0-05 1104 0-22536 0-525
0-10 597 0-22252 0-528

_ 0-20 315 0-22237 0-516
5-20-1 0-05 997 0-22551 0-515
0-10 566 0-22280 0-509

0-20 337 0-22257 0-495

snow wetness over varied vegetation covered terrain. This was confirmed by finding that snow wetness esti-
mates obtained using Equation (11) were highly correlated (r = 0-859) but significantly different (p < 0-05)
than the air temperature-based values in the test data set [see Equation (11) vs. Equation (1) in Table III],
which were sampled at a sparsely vegetated location. The high correlation suggests that the regression
model [Equation (11)] learned the general trend between snow wetness and Ty values, whereas the signifi-
cant difference in group means suggests that the amount of overlying vegetation influenced the microwave
emission behaviour, causing an underestimation by Equation (11) in sparsely vegetated areas (Figure 3) and
an overestimation by Equation (2) over a varied vegetation covered region (Figure 4).

However, both significant correlation and equal variance were found between ANN-retrieved and air
temperature-based snow wetness in the test data set [see ANN vs. Equation (1) in Table III]. These statistics
indicate that the ANN not only learned the general relationship between snow wetness and Ty values, but
also accounted for the depolarization effect of vegetation on microwave emission. Such evidence was also
seen in model comparison (Table IV), for only ANN snow wetness estimates were highly correlated and
similar to those obtained by the regression model on the data set from which the regression model was
developed.

Although the ANN approach was comparable with, and more robust than, the regression method (Table
IV), significant differences were found between ANN-retrieved and air temperature-based snow wetness in
the validation data set, for the associated p value is 0-009 in paired comparisons (Table III). As seen in
Figure 4, most of the uncertainties were related to medium vegetated areas having air temperature-derived
snow wetness values below 3% or above 6% by volume. That SSM/I Tg signatures of medium vegetated

" Table III. Comparison of model-retrieved versus air temperature-derived (GRND) snow wetness

“Model " Validation data set “Test data set
Vvs. - - -
GRND r t Test* (p > |1]) r t Test* (p > |t|)
"Group  Paired “Group Paired
means comparisons means comparisons
“ANN vs. Eq. (1) 0585  0-046 0-009 0862 0617 10-384
Eq. (2) vs. Eq. (1) 0194  0-000 0-000 0975  0-993 0-952
Eq. (11) vs. Eq. (1) 0-511  0-063 0-014 0859  0-010 0-009

. Group means: testing whether the variance of the two group are the same
Paired comparisons: testing whether the mean difference between the paired variables is different from zero
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Figure 3. Comparison between model-retrieved and air temperature-derived snow wetness in the test data set
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Figure 4, Comparison between model-retrieved and air temperature-derived snow wetness in the validation data set
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“Table IV. Comparison between model-retrieved snow wetness

‘Model “Validation data set “Test data set
Vs, - -
Model r t Test* (p > |?]) r t Test* (p > |t|)
‘Group  Paired 'Group  Paired
means  comparisons means  comparisons
"ANN vs. Eq. (2) 0444 0-001 10-000 0892 0619 "0-380
ANN vs. Eq. (11) 0-769 0-973 0-948 0-887  0-009 0-003
Eq. (2) vs. Eq. (11) 0-445 0-002 0-000 0-863 0-010 0-009

“*Group means: testing whether the variance of the two group are the same
Paired comparisons: testing whether the mean difference between the paired variables is different from zero

“areas with low snow wetness are similar to those of sparsely vegetated areas with high snow wetness, may
be a result of: (i) the lack of input/output data patterns in a high snow wetness range (Table I), resulting
in the selection of a smaller training data set in which certain significant input/output relations were lost
by random selection; and (ii) uncertainties in estimating snow wetness using Equation (1), owing to the
temporal and spatial variability of air temperature over different geographical areas.

CONCLUSIONS

This study has used a backprop ANN to find a relationship between SSM/I Ty observations of an area
and snow wetness derived from air temperature data. Results show that the ANN may overcome the
limitations of the existing regression models in estimating snow wetness from SSM/I data over varied
terrain with varying vegetation cover.

Although the ANN can learn input/output relationships from noisy data, a sufficient number of repre-
sentative input/output data can improve the ANN performance. As more representative input/output

relationships are established by using data from varied vegetation covered terrain, we expect our ability
to predict snow wetness to improve.
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